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The conformation of lightly branched star polymers in the theta state is investigated. Long-range two- and 
three-body interactions are assumed to compensate one another exactly, whereas the screened interactions, 
arising from the finite width of the interatomic potential, do survive. Their repulsive potential dies off with 
interatomic distance r like (r2) -s/2, so that the mean-square radius of gyration is asymptotically 
proportional to the number of bonds N. However, the screened interactions expand the polymer above 
the random-walk conformation and give rise to a further topology-dependent term proportional to N 1/2. 
The topological index g = (S  2)star/(S2)lin decreases with increasing N for any degree of branching, becoming 
linear in N -1/2 and tending to the limit 9o~=(3f-2)/f 2 for large N, in agreement with Monte Carlo 
simulations performed at a vanishing second virial coefficient by Bruns and Carl in 1991. A similar 
dependence from N-t/2 is also found for the ratio of the hydrodynamic radii h= RH,star/RH,li  n. 

(Keywords: star polymers; theta behaviour; interactions; modelling) 

I N T R O D U C T I O N  solvent-induced attraction at T=®.  The corresponding 

An increasing number of experimental results from free-energy contribution due to two general atoms h and 
monodisperse and well characterized regular star j is proportional to (rZ(h,j)) -~ with ) '=5/2. Since )' is 
polymers have been available in the last few years 1 11 larger than 2, this potential vanishes quickly with 
owing to new synthetic methods 1 3,12. Stimulated by increasing interatomic distance and does not alter the 
these results, many theoretical papers employing different asymptotic proportionality between the mean-square 
approaches 7's'13-~s, as well as some Monte Carlo radius of gyration and the molecular weight, but leaves 
simulations 19-21, have also appeared in the literature, a sizeable effect for finite polymers 13'2s. By contrast, the 
We recently studied 22 the equilibrium properties of )' exponent of the long-range interactions is 3/2, and the 
regular star polymers in the unperturbed state at simple proportionality is lost except at the ® temperature 

in the high-molecular-weight limit. the O temperature, defined as the temperature at 
A basic feature of our approach is the representation which the second virial coefficient A 2 vanishes. In general, 

® depends on both molecular weight and polymer of the polymer configuration as a sum of Fourier normal 
topology23 26, although for N ~  it tends to the m°des23" The latter were naively derived by anal°gy with 
same limit ®~ for any f4,9,23 25. Vanishing of A 2 is some correct results by Zimm and Kilb dealing with 
effectively achievedbycompensat ionbetweenlong-range star polymer dynamics 29. However, after the above- 
intermolecular two- and three-body interactions, the mentioned paper 22 was published, we found that the 
former being attractive and the latter repulsive 23'25'z7. normal-mode representation employed by us only applies 
This also implies a virtually complete cancellation to the so-called phantom polymer, that is, to the polymer 
between the corresponding intramolecular interactions 27. devoid of any intramolecular interaction beyond the 
Therefore, at T = ®  only shorter-range repulsions stereochemical range of a few chemical bonds 23. As a 

23  25  28  contribute to the intramolecular free energy di,tra ' ' . consequence, most of the results reported z2 were 
In order to distinguish them from the short-range incorrect and the whole paper was therefore withdrawn 
interactions between atoms separated by few chemical subsequently3°' 
bonds, they may be denoted as medium-range interactions. The general normal-mode approach to star polymers 
They arise from the finite width of the interaction was presented by some of us in a recent paper dealing 
potential, consisting of a hard-core repulsion surrounded with the good-solvent regime 31. In the present paper we 
by a van der Waals attraction, hence the name 'screened follow the same approach to study the equilibrium 
interactions'28; they prevent the chain atoms from coming properties in the ® state. The star will be described by 
closer than a lower-limit distance, and unlike the an equivalent bead-and-spring model, with Gaussian 
long-range interactions they cannot be compensated by distributions for the interbead distances (this is not to be 

confused with a random-walk model, which applies only 
to the phantom polymer in this context). The effect of 

* To whom correspondence should be addressed first-neighbour correlations among skeletal rotations is 
t Present address: Ausimont SpA, via San Pietro 50, 1-20021 Bollate absorbed in the effective mean-square length f2 of the 
(MI), Italy spring connecting adjacent beads; if v chemical bonds of 

0032-38611/93/122615~08 
',~, 1993 But te rwor th -He inemann Ltd. POLYMER, 1993, Volume 34, Number 12 2615 



Regular star polymer in theta state." F. Ganazzofi et al. 

length I are contained within each spring, we have where the unitary matrix X is defined as 
f2--vCool 2, where C~ is the characteristic ratio• For 

• 1 1 1 1 
convenience, however, in the following, beads and springs "'" 
will still be designated as 'atoms' and 'bonds'. 1 e i~' e2it# • • •  eitf - 1)(o 

The equilibrium conformation will be determined 
through self-consistent minimization of the chain free X = f  -1/2 1 e 2k° e 4i~° . . .  e 2 i ( f - l ) q  ( ~ ) E  

energy 23, written as the sum of an elastic and an 
interatomic interaction contribution• The former has an .1 ei(Y - 1)~, . . . . . .  ei(Y_ 1)2~ 
entropic origin, opposing any departure from the most 
probable random-walk conformation, whereas the latter (4a) 
will be regarded as due to the screened interactions X_ ~ 
only. This approach applies in particular to lightly tp=2n/f =X* 
branched stars; here many-body interactions are of minor 
importance and the space-filling conditions considered ® being the symbol for the direct product. The 
explicitly by some authors 13'i4 through scaling theories eigenvalues may therefore be collected into two classes: 

the first one has unit multiplicity and derives from 
do not yet apply, diagonalization of Mo + ( f -1 )M1;  the second one has 

multiplicity ( f - 1 )  and derives from diagonalization of 
M o - M 1 .  We now assume (i) conformational uniformity 

THE NORMAL COORDINATES OF THE within the chain, meaning that the average product of 
REGULAR STAR two bond vectors only depends on their topological 

separation, and (ii) short-range correlations, meaning that 
The molecule comprises N + 1 total atoms and f equal the average bond-vector product vanishes quickly with 
branches, hence N/f  atoms per branch and one atom at increasing topological separation. Both requirements are 
the branch point. A vector #(')(h) is associated with the met to a very good degree in the unperturbed state and 
hth bond of the rth branch, oriented towards the free represent sufficient conditions to have Fourier-type 
end; h increases from 1 through N/f  from the branch normal modes. By further considering the molecular 
point to the free end. Let us define the vector array L of symmetry and the boundary conditions at the arm ends, 
the bond vectors and the matrix M of the average vector M o + ( f -  1)M~ and Mo - Ma in equation (4) are reduced 
P r°ducts23,25: to the diagonal matrices AA and A B through the rotation 

L =  [¢(1)(1) #tl)(2) ... #(1)(N/f) #(2~(1) ... matrices A and B, respectively, where: 

- ~  [~.,6m. (5) #(2)(N/f) ... E(Y)(1) ... #(Y~(N/f)] (1) (AA)m=f2Ct26=. (AB)m__ 2 2 

A T• A = EN/: B T" B = Era: (5a) 

M =  M1. M° Mx ..• M1 (2a) (B)h,,= C cos[q2m- ~(h- 1/2)] (5b) 

IM~ MI Mx ... qp=np/(2N/f+l) C=2/(2N/f+I) 1/2 

where From equations (3)-(5) we have: 

(Mo)hj = ( ft~)(h) • #(,)(j) ) "A 
(M1)hj = ( t  "~ )(h) #(')(j)) r ~ s (2b) B 

( [t,(,)(h)] 2) = e2. /, = L. V V= X • B (6) 

Sending the reader to ref. 31 for more details, the normal 
coordinates E = [#(1) . . . . .  ~7(N)] are obtained from L by: B 

E = L. V (3a) and the full expression of the normal coordinates is: 

where for antisymmetric modes 

V *T. M '  V= A (diagonal) V" V *T= E N (3b) '(q2m)=f-1/2C ~Y ( ~ #(')(h))sin[q2,.(h-1/2)] 
h = l  \ r = l  

E N being the identity matrix of order N. It is useful to (7a) 
perform the diagonalization in two steps 25'3z. First we 
reduce M to the block-diagonal form: for symmetric modes 

Abloc k = X*" M" X =  #*V)(q2m- 1) = f -  1/2C ~ g(')(h) eirv~' COS[q2m- l( h -- 1/2)] 
h = l  r = l  

I M  o + ( f -  1)M1 0 0 ... 0 (7a) 

~ Mo -- Mi 0 ... 0 where v = 1, 2 . . . . .  f -  1; m = 1, 2 . . . . .  N/f  
0 M o - M ~  ... 0 The mode symmetry may be simply associated with 

that of the sine and cosine functions, although a more 
3 1  (v) complete justification exists . Since all the t 7 sets with 

0 0 ... M o - M ~  different v are statistically equivalent, for brevity we shall 
only refer in the following to the set with v = 1, dropping 

(4) the v index and suitably accounting for the ( f - I )  
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multiplicity. We therefore put: proportional to the mean-square chain thickness. In 
equation (13) the double sum runs over all the star atoms 

~(qzm_l)=~(v=l)(q2m_l) (7C) O<~h,j<~N, provided they are separated by at least /~ 
It will be recognized from equations (3)-(6) that the bonds. This lower cut-off 25'28 arises from the intrinsic 
eigenvalues ~2 and f12 are the strain ratios of the mean- stereochemical requirements of a real polymer, and its 
square antisymmetricandsymmetricmodes, respectively, value may be estimated according to the procedure 

discussed in ref. 25: a typical value of/~ is 50 chemical 
bonds for atactic polystyrene. In the present context, 

THE FREE-ENERGY SELF-CONSISTENT where an equivalent bead-and-spring model is adopted, 
OPTIMIZATION /~ decreases by a factor v, where v is the number of chemical 

bonds per spring. 
We need first the analytical expression of the mean-square The equilibrium conformation is obtained by minimiz- 
interatomic distances between atoms h and j  on branches ation of the overall free energy (equations (11)-(13), 
r and s as a function of the strain ratios 2 ~,,, ]/2 (see together with equation (8)) with respect to all the degrees 
equation (5); O <<, h, j <<, N /f, 0 being the branch point and of freedom, i.e. 0d/ t?~2=0 (antisymmetric modes) and 
N / f  the free end). We have a 1: O~/~fl 2 = 0 (symmetric modes). The resulting equations 

N/f are:  
{(ab ) (r2(h.J)>..=({z/f) E . ,  2 2 

m=l 1 5K 
2 - 1 - -  --  ~, ~, (a~h~))ZJ(h,j) - 7/2 (14) 

+[(f-1)(b~'~))2+2f(1-6rs)b~"h)b~'~)]fl 2} (8) % 6 f h j 

5 f ( ~ h ~ , b ( , . ) , 2 j ,  h a-7/2 where 1 _ l _ g  t hSJ t ,sl 
aJ,~ ° = C sin[q2m(J + h)/2] sin[q2,.(j- h)/2]/sin(q2~/2) (9) fi2 

b~)=Ccos[q2m_l(j+h)/2] + 2f 2 ,  k(m)h(m)l[la i]_7/2 ~ 
X sin[q2,,_ l(J-- h)/Z]/sin(q2m- 1/2) (9a) ( f -  1) ~h' i "Oh ~'0j oV,,j, ] (14a) 

qp = rcp/(2N/f+ 1) C = 2~(N/f+ 1) 1/2 (9b) where 

Within the Gaussian approximation, from the mean- J(h,j)= (rZ(h,j))/E 2 (14b) 
square distances we also get the mean-square radius of the topological separation between h and j never being 
gyration (S 2) as a function of the strain ratios: smaller than k. In equations (14) the unprimed double 

sums run over all pairs of atoms, whereas the primed 
( S 2 ) = r 2 ( N + l ) Z ] - X ~ ( r Z ( h , J ) )  double sum in equation (14a) is performed only 

h j on pairs on different arms. Equations (14) together with 
m~ 2 - f ' ~  equation (8) form a coupled set of equations to be solved 

= [ 4 ( U +  1)] -1 }" [ c~2 -(1 + J self-consistently. 
,, = 1 Lsin2(q2.,/2) \ N + 1 

/ (10) THE REGULAR STAR POLYMER AT T = O  
+ ( f -  1) sin2(q2, "- d2)J 

The perturbative approach 
as well as the hydrodynamic radius RH: We follow first a perturbative approach, assuming K 

to be small and the arm length very large, i.e. N/f>> i. 
R~ ~ = (N + 1)- 2 ~, ~, ( r -  l(h,j)) We start with the phantom-chain strain ratios ~2 = 2 _ ]/,,= 1, 

h j hence with (r2(h,j)} = Ih-j]d 2 for atoms on the same arm 
( r - l (h , j ) )  = [6/rc(rZ(h,j))] 1/2 (10a) (see equation (8), r=s) or (r2(h,j))=(h+j)d 2 for atoms 

From the 'Introduction', the free energy in kaT units on two different arms (r ¢s). Inserting these values in 
is expressed as: equations (14) and transforming the sums into integrals, 

2 and ]/2. We focus we get the perturbative values of ct,, 
~=~el-[-,.q~intra (11) our attention on the collective internal modes having 

The elastic component ~e l  has a purely entropic origin the Fourier coordinate %<< 1, i.e. on the large-scale 
and is given by/5: properties, but at the same time we assume pOcqpN/f>> 1 

ms (p=2m or 2 m - l ,  see equation (5b)). After some 
s/~l = (3/2) ~ [~2 _ 1 - In ~2 + ( f _  1)(f12_ 1 - In/32)] straightforward but tedious algebra, we get 

2 ( ~ 2  m=x G,,"flam ~- (8/9)(Kffcl/Z)(Zrcqpk)l/2 (15) 

(12) ~2 = 1 + (lO/3)K/f: 1/2 (16) 

the multiplicities of the modes with different symmetry where p = 2m (for a~, antisymmetric modes) or p = 2m - 1 
being due to the degeneracies of the eigenvalues (see (for //2, symmetric modes) and terms of the order of 
equation (4)). The intramolecular component ~¢~.t,. is (N/f)-1/2p-, ,  ~ 1> 1/2, are neglected; this is warranted if 

2 3  25 28 
only due to the screened interactions ' ' : p>> 1, as stated above. Note that equations (15) and (16) 

"~intra = (1/2) ~ ~ a2s(h,j ) give the linear chain result* for f =  2 and that the polymer 

h j 

a2s(h,j) = K d S ( r 2 ( h , j ) ) -  5/2 (13) *The result in equation (15) coincides with that of the linear chain 2s 
for f = 2 ,  if we note that the constant G in ref. 28 is given by 

K being an appropriate non-dimensional parameter G=(4/15)(2rO ~/2 
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topology does not appear explicitly in equation (15). In 
2 and //2 tend the high-molecular-weight limit both ~,, 

to the same constant ~2 for the collective modes 
(small m), thus yielding an asymptotically affine expansion 0.23 
independent of the number of arms. The present result 
is consistent with the localized character of the screened 
interactions; therefore, for N / f ~  their effect on the N "~ - - 
large-scale properties may be absorbed into an effective, ,.- ' 
renormalized bond length ~f, independent of the polymer 
topology. Thus, for example, the mean-square radius of ~^ 

U3~v Z gyration is asymptotically given by the simple expression: 0.22 

( $ 2 )  = 0~2g~2 N 3 f - 2  
f~i-- (17) 

More generally, the result reported in equation ( 1 5 ) ,  ~ f  ~Z 
when inserted into equation (10), implies that an ~ l - - - - . . . . ~ _ . . _ . . . . _ . r . . _ . _ _  
additional term proportional to N 1/2 is present in ($2~, 0.21 I I 
so that we may write, in analogy with what we found for 0 2 z, 6 
the linear chain27'28: 10.__0 

¢-ff 
N 3 f - 2  ~, 

($2)=~2~2 y LI--A(f)N -1/2] (17a) Figure l The mean-square radius of gyration plotted as ($2)/ 
O [Nf2(3f-2)/f 2] as a function of N -1/2 for the linear and the star 

polymer. The number of a rmsf i s  shown on the curves. The common 
w h e r e  the  prefactor A(f) depends o n  the  polymer limit of all the curves for N ~  is given by 62/6 (see also equations 
topology. Its value as well as its sign depend crucially (16) and (17)) 
on the strain ratio of the most collective modes with m 
of order unity, which cannot be evaluated analytically in 
closed form even to first order in the parameter K. We 
therefore turned to a numerical solution of the coupled 0.3z, 
equations (14) and (8). 

The full numerical solution 
The numerical solution of the full self-consistent 

equations (14) and (8) was found using the same iterative 
procedure as we used previously (see e.g. ref. 28). In doing *-' 
so, no further mathematical approximation is required ~_, ~ J J f = 9 f = 9  
and short-arm polymers may be easily handled by ~- 0.32 ~ ~  ~ 
carrying out the full sums. We chose K=0.087 and a ,,4 
cut-off value /~= 1 for simplicity, so that the effective ~- 
variable K / k  1/2 has the value already used by us for atactic a: [~ 
polystyrene in previous work28; the largest f taken into 
consideration was 12 and the largest arm length was 

2 N/f=400. From the self-consistent sets of Ctm, r2 and 
(r2(h,j)) values, we get (S 2) and R H through equations 
(10). The numerical results are reported in Figure 1 as 0.30 t I i I t 
(S2)/[N~E(3f - 2)/f 2] as a function of N -  1/2 for the linear 0 2 /4 6 
chain ( f=2)  and for nine- and twelve-arm stars. In 10___0 
agreement with equation (17a), the plot is linear at large 
N, A(f) being positive and largest for f =  2, then decreasing Figure 2 Same as Figure 1 for the hydrodynamic ratio plotted as 
with increasing f and becoming negative for f > 4 %  RH/{N'/:¢fl/2/[2-f+tf - 1)x/2] }. The limit for N~oo is aa(n/6)~/2~ 
Therefore, for a given N, the ratio (S2) /[Nf2(3f-2) / f  2] 
is larger the larger is f, because the arms are shorter so 
that the relative importance of the repulsive interactions Figure 1. In this respect, we point out that relatively short 
across the branch point is larger. Furthermore, Figure 1 sequences experiencing little, if any, expansion have a 
shows that, at smaller N, terms in N -~ and higher larger weight in determining RH than in (S 2) both 
negative powers of N are non-negligible, imparting a because R n is a linear quantity and because it depends 
downward curvature to the plots for f =  9 and 12. on reciprocal averages (see equation (10a)). Therefore, the 

The corresponding plot for the hydrodynamic radius screened interactions are less important and the plots of 
is reported in Figure 2, where we show Rn/{N1/2ffl/2/ the hydrodynamic radius are qualitatively similar to those 
[ -2 - f+  ( f -  1)x/2] } as a function of N -  ~/2. The curves of the phantom polymer, unlike those of the mean-square 
display an upward curvature for both the linear and the radius of gyration. In particular, for the phantom polymer 
star polymer, unlike the curves of (S 27 shown in it may be shown that both (S2)/N and Rn/N 1/2 decrease 

with increasing N because of terms proportional to N -  

t In ref. 25 two of us made the incorrect statement that A(J) ) is positive (see later). 
and increasing wi thf  The error must be traced back to the inaccurate In order to make a better comparison of the present 
extrapolation of equations (15) to the very first modes results with those of the phantom polymer, we report in 
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Figure 3 Themolecular-weight dependenceofrat ios ct 2= ($2 ) / ($2 )p  h Figure 4 The g ratio 2 2 g=(S )st.r/(S )lin (see equation (19)) as a 
and (~H = Rn/Rn.ph for the linear and the star polymer (see text) function of N- i /2  for a nine-arm and a twelve-arm polymer. The limiting 

value for N-~o9 is given by equation (19a) 

Figure 3 the expansion ratios a 2 and an, defined as: 

a 2 = ( $ 2 ) / ( $ 2 ) p  h (18) (17a) we have: 

O~H~-RH/RH,ph (18a) g~-go~{l +[A(2)-A(f)]S -1/2} (20) 

where the results for the discrete phantom polymer are (we recall that A(f)< 0 for f >  4). For smaller N, further 
obtained through equations (8)-(10) and (14) by setting terms of the order of N-1 are non-negligible, which 

2__ 2 - -  
am = fl,, = 1. In this case, the curves of the two expansion impart a downward curvature to the plots. 
factors are qualitatively similar: in particular, for the In this context, we point out that for the phantom 
linear chain both a2 and a n increase with increasing N. chain we have (rE(h,j))=kg ~2 throughout, k being the 
This suggests that the different behaviour shown in bond separation between atoms h andj  (k = l, 2, 2N/f). 
Figures ! and 2 is indeed due to the small expansion of " " '  Assuming first a continuous contour coordinate k, the 
the short strands, which makes R H less affected than (S 2) sums over h andj  in equation (10) are replaced by integrals 
by the screened interactions. Furthermore, the maximum and we get: 
in the plots for the twelve-arm star is of interest, again 

2 cont 2 reflecting the small expansion experienced by the star (S )ph  =g~N( /6 (21) 
with very short arms. An analogous, although shallower, for any N. On the other hand, assuming a discrete chain 
maximum is also shown by the nine-arm star at roughly model and performing the sums exactly as done 
the same arm length, therefore at a smaller N. This result 
is in keeping with the notion that the expansion is affine throughout in the present paper, we have: 

only in the asymptotic limit, but not for finite polymers, Nf2(N/f+l (N ( 3 f - 2 ) +  2"~ 
as is implicit in equation (17a), whereas short strands (s2)dL scr -  ) (22) 6(N+ 1) z \ f  J 
comprising few atoms are not affected. 

whence 

The topological indices discr N/f + 1 (N  
A quantity often reported in the literature is the gph = ( 3 f - 2 ) + 2  

(U + 1)(U + 2) \ f  J topological index g, defined as the ratio: 

g = <S2)st.J(S2)li. (19) "" g~o + 3(1 -g~)N-1 (23) 

This index may be taken as a measure of the degree of so that g~hsCr decreases with increasing N (g~ < 1 if f > 2 ,  
compactness of the star as compared with thelinear chain see equation (19a)). The plot of gpaihscr is reported for 
having the same molecular weight. From the curves comparison in Figure 4 (broken curves): the N -1 
reported in Figure l, we get the results shown in dependence gives a much faster convergence of gpdih~¢r to 
Figure 4 (full curves). Furthermore, equations (17) show the asymptotic value g~o and a parabolic plot with an 
that, for N ~  ~ ,  g tends to the value32: upward curvature when reported as a function of N-i/2, 

unlike our results (full curves). 
go~ =(3f--2)/f 2 (19a) A similar topological index h may be defined in terms 

of the hydrodynamic radius Rn: It is remarkable that g tends from above to the asymptotic 
value god with an N -  1/2 dependence; in fact, from equation h = Rn,star/Rn,lin (24) 
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From the plots of Figure 2, we get the curves reported a smaller slope at large N; this is consistent with h being 
in Figure 5 (full curves). For N ~ ~ ,  h tends to the limit 3 a: related to linear polymer dimensions and g to quadratic 

f 1/2 ones. 
ho0 - (24a) 

2 - f + ( f - 1 ) x / 2  Comparison with experimental data and computer 
equal to the asymptotic value of the phantom polymer, simulations 
The curves are quite similar to those of the g ratio with Experimental results on well characterized monodisperse 

star polymers in the 19 state with f ranging from 
3 to 18, including polystyrene 6, polyisoprene 9 and molten 

' ~ ~ ' polyethylene 1° stars, suggest that indeed g tends from 
above to an asymptotic value with increasing molecular 

0.71 - ~ "  weight. However, any N -  1/2 dependence is rather difficult 
to ascertain due to the relatively small number of data 
and their scatter. High-molecular-weight values of g are 
collected in Table 1: they are generally indistinguishable 

0.69 from go® for stars having up to about six arms, in 
agreement with our results in the limit N--,oo, but tend 

.s: to be larger than g~ at larger functionalities 0c= 12 and 
18, possibly f = 8  as well). Furthermore, results obtained 
from different stars with the same f suggest a non- 
universality of the g ratio, as already pointed out 

0.6~ by Douglas et al.tS: in fact, g is larger than 9oo 
by about 20% for 12-arm polystyrene 5'6 or 18-arm 
polybutadiene 11, but it is larger by about 40% for 18-arm 
polystyrene 5'6, whereas still larger differences are present 

0.62 I I I I I in the case of 12- or 18-arm polyisoprene 4'9. However, 
0 2 z, 6 since the number of bonds per star arm is often not very 

100 large (i.e. N/ f<104,  see Table 1), experimentally the 
f f f  asymptote may not have been reached yet. This might 

Figure 5 Same as Figure 4 for the h ratio h=Rn,,t~,/Rn,n, (see explain the particularly large 9 values of molten s tar  
equations (24)) polyethylenes 1°, which have very small figures of N/f, 

Table 1 Values of the # ratio in the ® state. Theoretical and simulation results are in the limit N ~  oo. The N/f range ( x 10-a) (N/f= number of 
repeat units per star arm) is given in parentheses below the corresponding O values; N/f stands for the number of skeletal atoms in experimental 
samples or the number of lattice points per star arm in Monte Carlo simulations on a lattice (MC) 

Phantom Scaling 
f chain a pS  b P I P  c PB d PE e M C :  MC g MC h theory i 

3 0.778 0.63-0.766 ' - - 0.84-0.711° , 0.8319 0.792o - 0.664 
av. 0.70 av. 0.78 

(5.9-7.6) (0.39-0.95) (40.67)  (~<0.90) 

4 0.625 0.631 0.653 - 0.641° 0.6819 0.6820 0.6221 0.575 
(4.3-6.5) (6.6-29) (1.1) (~<0.50) (~<0.90) (~<0.28) 

5 0.520 . . . . .  0.5520 0.5221 0.514 
( ~< 0.90) ( ~< 0.28) 

6 0.444 0.462 0.463 - - 0.5019 0.4820 0.4421 0.469 
(3.6-6.0) (5-14) (~<0.33) (~<0.90) (~<0.14) 

8 0.344 - 0.424 _ - 0.4219 0.3920 - 0.407 
(13-44) (~<0.25) (~<0.90) 
0.439 

(32-44) 

12 0.236 0.285, 6 0.334 - 0.291° 0.3519 0.2820 - 0.332 
(2.7, 8.8) (19-25) (0.4-1.1) (~<0.17) (~< 0.90) 

0.369 
(19-25) 

18 0.160 0.235'6 0.299 0.2011 0.381° - - - 0.271 
(9.5) (12-22) (3.1-7.8) (0.09) 

Phantom chain, 9® =(3f--2)/f2; see equation (19a) 
b Atactic polystyrene in cyclohexane at 34.5°C 
c Polyisoprene in dioxane at 34°C (refs. 3 and 9) or at 33°C (ref. 4) 
d Polubutadiene in dioxane at 26.5°C 
e Molten polyethylene at 140°C, partially labelled with deuterium 
: Simple and face-centred cubic lattice. ® point criterion: ( S  2) ocN. The 9 values were extrapolated to N--* o® through  N - 1  ~ 0 ,  N being 2 × 103 in 
all cases 
0 Face-centred cubic lattice with g values extrapolated to N--* oo. ® point criterion: mean-square arm length proportional to N/f 
h Simple cubic lattice. Extrapolation to N ~ o o  through 9=a+b/(N+ 1) 1/2 +c/(N+ 1). ® point criterion: A 2 = 0  
i Scaling theories, using g = 1.15f-1/2, from table III of ref. 13 through fit of experimental data from polyisoprene stars 
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down to < 102. A further problem arises from possible linear chain, no dependence on the number of arms being 
difficulties with the precise determination of the tO present any more (see equation (16) for ~2). Conversely, 
temperature; in fact, this is depressed in star polymers for more heavily branched stars 0c> 9, say) space-filling 
compared to linear chains, the more so the larger is f requirements may become essential in the core region. 
and/or the smaller is N / f  24 26. In particular, we point out that, although three-body 

Up to now, Monte Carlo simulations 19-21 have not interactions involving atoms on one or two arms are 
provided a clear-cut answer to the problem of whether basically compensated by two-body attractions at the ® 
the limiting # value is actually larger than g ~. Considering temperature where the second virial coefficient vanishes, 
self-avoiding polymers on a lattice with an attractive n-body repulsive interactions (n ~> 3) among atoms on n 
potential between non-connected segments on adjacent different arms cannot be compensated in any way. These 
lattice sites, the to state can be reproduced by suitably interactions are particularly effective in increasing the h 
tuning the strength of the potential. It turns out that with ratio above h~, since, as commented before, h depends 
increasing molecular weight g decreases to a value that rather strongly on short distances, which are most 
depends on the criterion chosen to define the to state 2~. In numerous close to the branch point. Therefore, h may 
fact, if the latter is defined as the state where the reach the asymptotic value h~ only for extremely high 
mean-square radius of gyration is proportional to the molecular weight, possibly beyond the accessible range, 
number of bonds, g exceeds g~ by a few per cent for any unlike the g ratio. Scaling approaches describing the star 
f ( u p  to ~ 15% for f =  9, or ,,~ 19% for f =  122°), whereas core as a concentrated solution suggest that for large f 
O is equal to go if the more fundamental criterion of a one should have 13'1~ g ~ f - 1 / 2  or2O g,,~(f_ 3)-1/2. Recent 
vanishing second virial coefficient (i.e. A 2 = 0 )  is adopted Monte Carlo simulations on a lattice 2° indeed suggest a 
(ref. 21, f~<6). Furthermore, in this case an N -1/2 crossover from g = g ~ = ( 3 f - 2 ) / f  2 to g ~ 0 c - 3 )  -1/2 at 
dependence is observed, thus basically supporting our large f, but in our opinion they are not conclusive in view 
theoretical prediction (see equation (17a) and Figure 1); of the limited ranges both in f and in the arm lengths 
furthermore, an additional, weaker dependence from N -  1 taken into consideration. 
was also detected, yielding a downward curvature 
qualitatively similar to that found by us (see Figure 4). 
Clearly, it would be of interest to simulate unperturbed A C K N O W L E D G E M E N T S  
stars with a larger functionality adopting the criterion of This work was financially supported by Consiglio 
vanishing A 2 to test whether the same results are still Nazionale delle Ricerche (CNR, Italy), Progetto 
found or if indeed g > g~ as the experiments suggest. Finalizzato Chimica Fine, and by the Italian Ministry of 

Experimental results on the h index are much more University and of Scientific and Technological Research 
scarce. In general, we may say that for 12-arm 5'6 and (MURST, 40%). 
18-arm 5 polystyrene h appears to be somewhat larger 
than ho~. Like the g ratio, h decreases with increasing 
molecular weight, but levels offat  a value that is definitely REFERENCES 
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